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Summary
A set of compressible flow relations describ-

ing flow properties across oblique shock waves,
derived for a thermally perfect, calorically
imperfect gas, is applied within the existing
thermally perfect gas (TPG) computer code.  The
relations are based upon the specific heat
expressed as a polynomial function of tempera-
ture.  The updated code produces tables of com-
pressible flow properties of oblique shock waves,
as well as the original properties of normal shock
waves and basic isentropic flow, in a format simi-
lar to the tables for normal shock waves found in
NACA Rep. 1135.  The code results are validated
in both the calorically perfect and the calorically
imperfect, thermally perfect temperature
regimes through comparisons with the theoreti-
cal methods of NACA Rep. 1135.  The advan-
tages of the TPG code for oblique shock wave
calculations, as well as for the properties of isen-
tropic flow and normal shock waves, are its ease
of use and its applicability to any type of gas
(monatomic, diatomic, triatomic, polyatomic, or
any specified mixture thereof).

Nomenclature
Symbols:

a speed of sound
A cross-sectional area of stream tube

or channel
Aj coefficients of polynomial curve fit

for cp/R
cp specific heat at constant pressure
cv specific heat at constant volume,

cp–R
M Mach number, V/a
p pressure
q dynamic pressure,
R specific gas constant
T temperature

ρV
2

2
----------

u velocity component normal to the
shock wave

V flow velocity
w velocity component tangential to the

shock wave
Y mass fraction
z lateral coordinate to upstream flow,

measured from wedge leading edge
γ ratio of specific heats, cp/cv
δ flow deflection angle;

2-D wedge half-angle
Θ molecular vibrational energy

constant1,5

µ characteristic Mach angle
ρ mass density
σ shock wave angle relative to the

upstream flow direction
Subscripts:

1 upstream flow reference point;
e.g., upstream of a shock wave

2 downstream flow reference point;
e.g., downstream of a shock wave

i ith component gas species of mixture
lim limiting conditions for oblique shock

waves
max maximum value
mix gas mixture
n total number of gas species that

comprise a gas mixture
perf calorically perfect
therm thermally perfect
t total (stagnation) conditions
Abbreviations:

1-D one-dimensional
2-D two-dimensional
CFD computational fluid dynamics
CPG calorically perfect gas
cpu (computer) central processing unit
GASP General Aerodynamic Simulation

Program
Copyright © 1997 by Kenneth E. Tatum.  Published
by the American Institute of Aeronautics and
Astronautics, Inc. with permission.
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NACA National Advisory Committee for
Aeronautics

NASP National Aero-Space Plane
TPG thermally perfect gas

Introduction
The traditional computation of one-dimen-

sional (1-D) isentropic compressible flow proper-
ties, and properties across normal and oblique
shock waves, has been performed with calori-
cally perfect gas equations such as those found
in NACA Rep. 11351.  When the gas of interest is
air and all shock waves present are normal to
the flow direction, the tables of compressible flow
values provided in NACA Rep. 1135 are often
used.  For shock waves in air that are oblique to
the flow direction, NACA Rep. 1135 contains
charts of certain flow properties.  These tables
and charts were generated from the calorically
perfect gas equations with a value of 1.40 for the
ratio of specific heats γ.  The application of these
equations, tables, and charts is limited to that
range of temperatures for which the calorically
perfect gas assumption is valid.  However, many
aeronautical engineering calculations extend
beyond the temperature limits of the calorically
perfect gas assumption, and the application of
the tables or equations of NACA Rep. 1135 can
result in significant errors.  These errors can be
greatly reduced by the assumption of a ther-
mally perfect, calorically imperfect gas in the
development of the compressible flow relations.
(For simplicity within this paper, the term ther-
mally perfect will be used to denote a thermally
perfect, calorically imperfect gas.)  Previous
papers2,3 described a computer code, and the
underlying mathematical formulation, which
implements 1-D isentropic compressible flow
and normal shock wave relations derived for a
thermally perfect gas.  The current paper, along
with a related NASA contractor report4, pre-
sents an enhanced computer code, and the corre-
sponding mathematical derivation, for the
computation of the oblique shock wave relations
based upon the assumption of a thermally per-
fect gas.

A calorically perfect gas is by definition a gas
for which the values of specific heat at constant
pressure cp and specific heat at constant volume
cv are constants.  NACA Rep. 11351, as well as
many compressible flow textbooks, derive and
summarize calorically perfect compressible flow
relations based upon this definition.  The accu-

racy of these equations is only as good as the
assumption of a constant cp (and therefore a con-
stant γ).  For any non-monatomic gas, the value
of cp actually varies with temperature and can
be approximated as a constant for only a rela-
tively narrow temperature range.  As the tem-
perature increases, the cp value begins to
increase appreciably due to the excitation of the
vibrational energy of the molecules.  For air, this
phenomenon begins around 450 to 500 K.  The
variation of cp with temperature (and only with
temperature) continues up to temperatures at
which dissociation begins to occur, approxi-
mately 1500 K for air.  Thus, air is thermally
perfect over the range of 450 to 1500 K and
application of the calorically perfect relations
can result in substantial errors.   A similar range
can be defined for other gases over which the gas
is calorically imperfect, but still thermally per-
fect.  At yet higher temperatures cp becomes a
function of both temperature and pressure, and
the gas is no longer considered thermally per-
fect.

NACA Rep. 1135 presents one method for
computation of the 1-D compressible flow prop-
erties of a thermally perfect gas (see “Imperfect
Gas Effects”1) in which the variation of heat
capacity due to the contribution from the vibra-
tional energy mode of the molecule is deter-
mined from quantum mechanical considerations
by the assumption of a simple harmonic vibrator
model of a diatomic molecule5.  With this
assumption the vibrational contribution to the
heat capacity of a diatomic gas takes the form of
an exponential equation in terms of static tem-
perature and a single constant Θ.  Tables of
these thermally perfect gas properties are not
provided because each value of total tempera-
ture Tt would yield a unique table of gas proper-
ties.  Instead, NACA Rep. 1135 provides charts
of the isentropic and normal shock properties for
air normalized by the calorically perfect air val-
ues and plotted versus Mach number for select
values of total temperature.  For oblique shock
waves, an even more limited set of charts is pre-
sented for shock wave angle σ, downstream
Mach number M2, and pressure coefficient as
functions of deflection angle δ for four static tem-
peratures at two total temperatures.

Because the imperfect gas method of NACA
Rep. 1135 is applicable only to diatomic gases
(e.g., N2, O2, and H2), a different method of com-
puting the 1-D isentropic and normal shock flow
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properties of a thermally perfect gas was devel-
oped and described in NASA TP-34472 and
AIAA-96-06813.  The method utilizes a polyno-
mial curve fit of cp versus temperature to
describe the variation of heat capacity for a gas.
The data required to generate this curve fit for a
given gas can be found in tabulated form in pub-
lished sources such as the NBS “Tables of Ther-
mal Properties of Gases”6 and the “JANAF
Thermochemical Tables”7.  Actual coefficients for
specific types of polynomial curve fits are pub-
lished in NASP TM 11078, NASA SP-30019, and
NASA TP-328710.  Use of these curve fits based
upon tables of standard thermodynamic proper-
ties of gases enables the application of this
method to any type of gas: monatomic, diatomic,
and polyatomic (e.g., H2O, CO2, and CF4) gases
or mixtures thereof.

In this report, a set of thermally perfect gas
equations, derived for the specific heat as a poly-
nomial function of temperature, is applied to the
calculation of flow properties across oblique
shock waves.  This set of equations was coded
into a previously developed computer program
referred to as the Thermally Perfect Gas (TPG)
code.  The new oblique shock wave capability
was added as an optional output to the isen-
tropic flow and normal shock wave tables of the
original code.  All output tables of the TPG code
are structured to resemble the tables of com-
pressible flow properties that appear in NACA
Rep. 1135, but can be computed for arbitrary
gases at arbitrary Mach numbers and/or static
temperatures, for given total temperatures.  All
properties are output in tabular form, thus elim-
inating the need for graphical interpolation from
charts.  As in the original TPG code, the biggest
advantage is the validity in the thermally per-
fect temperature regime as well as in the calori-
cally perfect regime, and its applicability to any
type of gas (monatomic, diatomic, triatomic,
polyatomic, or any specified mixture thereof).
The code serves the function of the tables and
charts of NACA Rep. 1135 for any gas species or
mixture of species, and significantly increases
the range of valid temperature application due
to its thermally perfect analysis.

Derivation of Oblique Shock Relations
Polynomial Curve Fit for cp

The selection of a suitable curve fit function
for cp is the starting point for the development of
thermally perfect compressible flow relations.

The form chosen for the TPG code was the eight-
term, fifth-order polynomial expression given
below, in which the value of cp has been nondi-
mensionalized by the specific gas constant.

(1)

This functional form is valid for each of the curve
fit data sets of the most useful references8,9,10.
See previous documentation of the TPG code for
more detail on this form2,3.  Different algebraic
expressions for cp/R could be exchanged for that
of equation (1) within the TPG code.  The form of
equation (1) was selected in the current work
because of its ease of implementation, and the
wealth of already available data8,9,10.  The only
requirements are that closed-form solutions to
both  and  must be known2.

Mixture Properties

The TPG code can be used to compute the
thermally perfect gas properties for not only
individual gas species but also for mixtures of
individual gas species (e.g., air).  The variation of
the heat capacity for the specified gas mixture is

(2)

where Yi is the mass fraction of the ith gas spe-
cies.  The value of  is determined from equa-
tion (1) for each component species.  With a
known curve fit expression for cp of the gas mix-
ture, the value of γ for a given temperature can
be directly computed, as can mixture properties
of gas constant and molecular weight.  Deriva-
tions of the 1-D isentropic relations and the nor-
mal shock relations from these properties are
given elsewhere2,3.

Oblique Shock Relations

Figure 1 illustrates the geometric relation-
ships associated with a shock wave at an arbi-
trary shock angle σ relative to the upstream flow
direction.  These relationships can be expressed
as

and (3)

(4)
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w
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w
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where u1 and u2 are the upstream and down-
stream velocity components normal to the shock,
and w=w1=w2 is the tangential velocity compo-
nent which is conserved across the shock.  Since
only the normal component of velocity changes
across the shock, the flow is turned through an
angle δ.  Solving equations (3) and (4) for w, a
single equation can be written:

(5)

The normal velocity components can be
expressed as

and (6)

(7)

Thus, equation (5) can be rewritten as

, (8)

a function of shock angle σ, deflection angle δ,
and the upstream and downstream velocities V1
and V2.

The continuity and momentum equations for
1-D flow across a shock wave in a shock-fixed
coordinate system (a stationary shock) are

and (9)

(10)

Dividing the momentum equation by the
continuity equation gives

(11)

Using the ideal gas law ( ), equation (11)
can be written in terms of only temperature and

normal velocity as

(12)

Substituting for u1 and u2 with equations (6)
and (7), equation (12) becomes

, (13)

a function of shock angle σ, deflection angle δ,
the  upstream and downstream velocities V1 and
V2, and the upstream and downstream static
temperatures T1 and T2.  However, the velocity
of a thermally perfect gas may be expressed as a
function of temperature2

(14)

at any point in the flow field, whether upstream
or downstream of the shock.  Thus, the depen-
dencies on velocity in equations (8) and (13) can
actually be expressed as dependencies on tem-
perature.

Assuming all upstream flow conditions are
known (state 1), and substituting equation (14)
for V1 and V2, equations (8) and (13) represent a
set of two nonlinear equations for three
unknowns: σ, δ, and T2.  Given any one of these
variables, the other two may be found numeri-
cally by means of Newton iteration4.  If the
shock angle σ is known, the tangential velocity
component is

(15)

Then the downstream normal velocity can be
defined as

  , (16)

a function of T2 only, instead of both T2 and δ as
in equation (7).  Thus, instead of equation (13),
equation (12) reduces to a function of T2 only
and can be solved independently of
equation (8).  For the case of known deflection
angle δ, equations (8) and (13) must be solved
simultaneously for T2 and σ.

Once the primary variables of temperature
T2, σ, and δ are known, all other flow quantities
may be computed.

V1,  M1

w =
 w1 u

1

σ

w =
 w2

u
2

σ
δ

V2,  M
2

Shock Wave

Figure 1.  Geometric relationships of oblique
shock waves.
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(17)

(18)

(19)

where V2 is known from equation (14).

Pressure and density downstream of the
shock wave can be calculated by the normal
shock wave relations2, noting that all velocity
terms (including Mach number) are defined nor-
mal to the shock.  The values of total pressure
ratio pt,2/pt,1 and the ratio of upstream-static to
downstream-total pressure p1/pt,2 can be calcu-
lated from combinations of static and total pres-
sure ratios2,4.

Figure 2 illustrates the relationships between
M1, σ, and δ for air at a sample Tt.  For a given
M1 and δ, two solutions exist for σ, correspond-
ing to what are commonly called ‘weak’ and
‘strong’ shock waves.  A maximum flow deflec-
tion angle δmax exists for any M1, defined as the
point at which the weak and strong shock solu-
tions coincide.  Strong shock waves always result

in subsonic downstream Mach numbers and
have shock wave angles approaching 90°.  Weak
shock waves are those for which the correspond-
ing wave angle σ is less than that at which δmax
occurs, and usually result in supersonic down-
stream Mach numbers, except as σ approaches
σ(δmax).

Oblique shock waves can only exist at Mach
numbers above a limiting case, i.e., M1>M1,lim.
For a given σ, the limiting Mach number is that
at which the Mach angle equals the shock angle,
i.e., µ=σ, where the  Mach angle µ is defined by

(20)

At these conditions the shock strength and δ
reduce to zero.  For a given δ, the limiting case
M1,lim corresponds to the Mach number for
which δ=δmax.  From a physical perspective, this
limit is the minimum Mach number at which an
attached shock wave can occur at the leading
edge of a wedge.  Below M1,lim the flow results in
a detached strong shock wave standing a finite
distance upstream of the wedge leading edge,
and the flow approaching the point of turning is
subsonic, not supersonic.

γ2

cp2
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2 γ2RT2=
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Oblique Shock Code Description
An interactive FORTRAN computer code,

herein referred to as the TPG code, has been
written based on the equations described herein
and in previous work2,3,4.  The code delivers a
complete table of results within seconds when
run on a computer workstation or personal com-
puter.  The purpose and primary output of the
code is the creation of tables of compressible flow
properties for a thermally perfect gas or mixture
of gases (styled after those found in NACA Rep.
1135).  In addition to isentropic flow and normal
shock wave properties, the TPG code now com-
putes properties across oblique shock waves,
given either the shock wave angle σ or the flow
deflection angle δ.  Tabular entries may be based
upon constant increments of Mach number, or
constant decrements of static temperature from
the total temperature.  As in previous
versions2,3, the utility of the TPG code is its
capability to generate tables of compressible flow
properties of any gas, or mixture of gases, for
any total conditions over any specified range of
Mach numbers or static temperatures T<Tt.  The
code recognizes that the properties of thermally
perfect gases vary with both total temperature
Tt and static temperature T, rather than with
only the ratio T/Tt.  A complete description of the
TPG FORTRAN code, Version 3.1, is given in
NASA CR-47494 and NASA TP 34472, including
the specification of a thermochemical data file
for the gases of interest.

Sample Tabular Output

Table 1 shows a sample of the tabular output
in the single table format for a shock angle of 30°
in air at Tt=1500 K.  Following a summary of the
gas mixture definition are columns of data for
the isentropic flow properties and the properties
across the oblique shock wave.  For a given shock
angle, the minimum flow deflection is 0°, corre-
sponding to a shock wave of zero strength, i.e., a
Mach wave.  Thus, the minimum Mach number
of 2.0 for a 30° shock angle is determined by the
equation for the Mach angle, equation (20).  For
all non-subsonic Mach numbers the code outputs
an informative message stating the minimum
σ(=µ) for that Mach number.  At subsonic Mach
numbers there is obviously no solution to the
shock relations, as noted in the output.

Tables 2(a) and (b) illustrate the TPG tabular
output for a constant flow deflection angle δ.
Table 2(a) gives the weak shock solutions, and

2(b) gives the strong shock solutions (i.e., σ
approaches 90° and M2<1).  In these cases the
limiting Mach number is determined by the
maximum flow deflection angle for which the
flow would remain attached to the leading edge
of a wedge with half-angle δ.  That is, solutions
to equations (8) and (13) only exist below some
δmax, and are double-valued in that regime.  At
Mach numbers below the corresponding limiting
M1,lim, an informative message notes the δmax.

Oblique Shock Code Validation
The oblique shock wave capabilities within

the TPG code were validated in the same man-
ner as were the basic isentropic flow and normal
shock wave methods2,3, both in the calorically
perfect and in the thermally perfect temperature
regimes.  In the current development, a normal
shock wave is simply a special case of an oblique
shock wave with σ=90°; i.e., the previous valida-
tions still hold for this special case.

Calorically Perfect Temperature Regime

The first validation test of the TPG code’s
oblique shock wave capability was the verifica-
tion of accuracy in the calorically perfect temper-
ature regime with air as the test gas.  In this
temperature regime, the specific heat of air is
nearly constant and the TPG code results should
be nearly identical to results obtained from the
calorically perfect formulas of NACA Rep. 1135.
For these test cases, data for standard four-spe-
cies air was used along with the standard values
for the mass fraction composition of air.  The
total temperature was set to 400 K, a tempera-
ture considered within the calorically perfect
temperature regime for air.  Properties were
computed from stagnation conditions to Mach
10, at Mach number increments of 0.1.  In the
case of real air at Tt=400 K, liquefaction would
occur well before Mach 10; the data is presented
to that extreme herein merely for comparison
with the calorically perfect gas tables of NACA
Rep. 1135 (which, incidentally, extend up to
Mach 100).

Figures 3 and 4 present TPG calculations of
M2, δ, p2/p1, ρ2/ρ1, T2/T1, and pt,2/pt,1 for air at
shock wave angles of 30° and 50°, respectively, as
ratios of the thermally perfect values (from TPG)
to the calorically perfect values computed by the
formulas of NACA Rep. 1135; each variable is
plotted versus upstream Mach number M1.  The
differences are less than 0.25% for all variables
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except total pressure ratio pt,2/pt,1.  Even for this
most sensitive variable, the differences are less
than 1%, and that value is approached only at
the largest shock angle and for Mach numbers
approaching 10.  These small differences actu-
ally represent the small amount of error associ-
ated with the calorically perfect gas
assumption2.  A slight variation with tempera-
ture actually exists in the heat capacities even at
such a low Tt, and is the cause of the variations
seen in figures 3 and 4.

Thermally Perfect Temperature Regime

Outside of the calorically perfect temperature
regime, the TPG code was validated by compari-
sons with results obtained via the imperfect gas
relations of NACA Rep. 1135 (i.e., the Θ-equa-
tions for a diatomic gas) for the properties of δ,
M2, p2/p1, T2/T1, ρ2/ρ1, and pt,2/pt,1.  The test
cases involved standard four-species air at total
temperatures of 1500 K and 3000 K, and at
shock wave angles of 30° and 50°.

The calculation for a total temperature of
3000 K is presented as an extreme case to illus-
trate application of the TPG code over an
extended temperature range under the assump-
tion of chemically frozen flow (i.e., frozen compo-
sition).  The presentation is in the same spirit as
that of previous works6,7, where data is pre-
sented to 5000 K and 6000 K, respectively.  As
always, users must keep in mind the applicabil-
ity of the assumption of frozen flow to a particu-
lar problem.

Figures 5(a)-(f) present ratios of the ther-

mally perfect gas properties to the calorically
perfect properties at identical values of M1 to
yield a measure of the imperfect gas effects.
Results are shown for both total temperatures
and both shock angles, for both the TPG code
and the Θ-equation method of NACA Rep. 11351.
The two thermally perfect gas methods agree
extremely well for this approximately-diatomic
gas.  Cursory examination of the plots shows
that imperfect gas effects increase with both
total temperature and shock angle.  For some
flow conditions the differences appear to be neg-
ligible, but, for other conditions, the differences
can be large.  Also, not all properties appear to
be equally sensitive to caloric imperfections.

Differences due to caloric imperfections of
10% or greater are observed for temperature,
density, and total pressure ratios at the higher
total temperature and greatest shock angle.
Caloric imperfection differences on the order of
4-5% are observed for all variables except static
pressure ratio, even at the lower total tempera-
ture.  Also, the magnitudes of the caloric imper-
fections do not vary uniformly with Mach
number.  The effects on δ are largest at lower M1,
but are larger for other variables at higher M1.
For static pressure ratio, the sign of the caloric
imperfection effect changes as M1 increases.
Thus, the use of the calorically perfect relation-
ships could result in substantial errors, particu-
larly in the design or analysis of flows with a
sequence of such shock waves.

The differences between the two thermally
perfect gas methods can be seen to be small (typ-
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(a)  Flow deflection angle δ

(b)  Downstream Mach number M2

(c)  Static pressure ratio p2/p1

(d)  Static temperature ratio T2/T1

(e)  Density ratio ρ2/ρ1

(f)  Total pressure ratio pt,2/pt,1
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Figure 5.  Effect of caloric imperfections on oblique shock wave properties; comparisons between TPG
and NACA Rep. 1135 for Tt=1500 K and 3000 K, and σ=30° and 50°.
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ically less than 0.25%).  This excellent agree-
ment verifies the accuracy of the TPG code with
the derived thermally perfect gas relations for
oblique shock waves based upon polynomial
expressions for cp.  Although these test cases
were all for air, which is a primarily diatomic
gas, the TPG code is also valid for polyatomic
gases.  The utilization of a polynomial curve fit
for cp makes the TPG code applicable to any
molecular structure of the gas, not just the
diatomic structure upon which the Θ-equations
(of NACA Rep. 1135) are based.

Comparisons with CFD

For arbitrary mixtures of non-diatomic gases
outside of the calorically perfect temperature
regime, no exact method was available with
which to validate the TPG code’s oblique shock
wave capability.  A further illustration of the
TPG code flexibility and robustness is shown by
comparison with a computational fluid dynamics
(CFD) Euler solution (i.e., inviscid flow) obtained
using the General Aerodynamic Simulation Pro-
gram (GASP)11.  GASP solves the integral form
of the governing equations, including the full
time-dependent Reynolds-averaged Navier-
Stokes equations and various subsets: the Thin-
Layer Navier-Stokes equations, the Parabolized
Navier-Stokes equations, and the Euler equa-
tions, including a generalized chemistry model
and both equilibrium and non-equilibrium ther-
modynamics models.  The current computations
utilized space marching (i.e., totally supersonic
flow) for the inviscid Euler equations.  Third-
order upwind inviscid fluxes were calculated
using Roe’s split flux normal to the flow direction
with Min-Mod flux limiting.  The NASA Lewis
Research Center equilibrium curve fits for spe-
cific heat8,9,10 of the same form employed within
the TPG code defined the thermodynamic char-
acteristics of the gases within GASP.

Since the Θ-equations of NACA Rep. 1135 are
valid only for a single-species diatomic gas, CFD
test case conditions were selected to highlight
the flexibility of the TPG code.  The gas chosen
was a two-species mixture of 20% steam and
80% CO2 by mass, neither species being
diatomic.  Upstream conditions were set at
M1=3.5, T1=1200 K and p1=101325 N/m2 (1
atmosphere).  A 2-D GASP grid was constructed
over a rather severe wedge angle of 25° with 20
uniformly-spaced computational cells per unit
length defined on a nondimensional domain (10

by 8.4 units).  The domain height was chosen so
that the resulting oblique shock wave would
pass through the downstream boundary.

GASP required 282.4 cpu seconds to compute
the solution on a Cray* Y-MP computer, not
including grid generation and GASP input setup
time (about 2 days).   The TPG solution was
practically instantaneous, computed on a Sun†

Sparcstation 20 workstation.  The resulting solu-
tions are shown in figure 6, with the TPG solu-
tion (σ=37.3037°) overlaid as a thick dashed line
on the GASP pressure ratio (p/p1) contours.  The
magnified view in the inset confirms the excel-
lent agreement of the shock positions, consider-
ing that GASP captures the shock over a number
of cells and the TPG solution is a precise point
solution.  The line plots of M, p/p1, and T/T1
shown in figure 7(a)-(c) corroborate the accuracy
of the TPG code for arbitrary mixtures of poly-
atomic gases.  The data points were interpolated
from the GASP solution (figure 6) along a hori-
zontal line at z=5.0 units above the wedge lead-
ing edge, and the TPG solution is shown as a
solid line with the discontinuous-shock position
calculated at the same lateral location of 5 units.

Temperature Limits of the TPG Code

The TPG code provides valid results as long
as its application is within the thermally perfect
temperature regime for the gas of interest.  Out-
side of the region for which cp is a function of
temperature only, the thermally perfect results
produced by TPG will no longer accurately
reflect what actually happens in nature.  Dissoci-
ation will occur above some upper temperature
limit, and will cause a deviation from thermally
perfect theory due to a changing composition of
the gas mixture.  At the opposite extreme, below
some lower temperature real gas effects will
become important (i.e., intermolecular forces
will not be negligible).  The TPG code user must
remain aware of these high and low temperature
boundaries associated with the thermally perfect
assumption for the particular gases under con-
sideration.  Note that these are boundaries asso-
ciated with the physical properties of the gases,
and are distinct from the upper and lower tem-
perature limits associated with the polynomial
curve fits utilized within the TPG code.  These

* Cray Research, Inc., Minneapolis, MN 55402.
† Sun Microsystems, Inc., Mountain View, CA

94043.
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latter curve fit limits are tracked within the
code, and warnings are output by the TPG code
when these limits are exceeded.  The limits of
the thermally perfect assumption are the user’s
responsibility, and are dependent upon the spe-
cific gas properties and flow conditions2.

Conclusions
A set of compressible flow relations describ-

ing flow properties across oblique shock waves
has been derived for a thermally perfect, calori-
cally imperfect gas, and applied within the exist-
ing thermally perfect gas (TPG) computer code.
The relations are based upon the specific heat
expressed as a polynomial function of tempera-
ture.  The code produces tables of compressible
flow properties of oblique shock waves, as well as
the properties of normal shock waves and basic
isentropic flow, in a format similar to the tables
for normal shock waves found in NACA Rep.
1135.  The code results were validated in both
the calorically perfect and in the calorically
imperfect, thermally perfect temperature
regimes through comparisons with the theoreti-
cal methods of NACA Rep. 1135.  The TPG code
is applicable to any type of gas or mixture of
gases; it is not restricted to only diatomic gases
as are the thermally perfect methods of NACA
Rep. 1135.  This utility is illustrated in compari-
son with a state-of-the-art computational fluid
dynamics code.

The TPG code computes properties of oblique
shock waves for given shock wave angles, or for
given flow deflection (wedge) angles, including
both strong and weak shock waves.  Both tabular
output and output for plotting and post-process-
ing are available.  Typical computation time is
on the order of 1-5 seconds for most computer
workstations or personal computers, and the
user effort required is minimal.  Thermally per-
fect properties of flows through oblique shock
waves may be computed with less effort than has
traditionally been expended to compute calori-
cally perfect properties.  Errors incurred from
using calorically perfect gas relations, instead of
the thermally perfect gas equations, in the ther-
mally perfect temperature regime have been
shown to approach 10% for some applications.
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Table 1:  Sample TPG tabular output for constant shock wave angle

Table 2:  Sample TPG tabular outputs for constant flow deflection angle

(a)  Weak shock wave solutions
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Table 2:  Sample TPG tabular outputs for constant flow deflection angle

(b)  Strong shock wave solutions

Figure 6.  GASP 2-D Euler solution pressure ratio contours and TPG oblique shock wave for 20%
Steam/80% CO2, by mass; M1=3.5, T1=1200 K over a 25° wedge.
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(c)  Static temperature ratio T/T1

Figure 7.  GASP 2-D Euler and TPG oblique shock wave calculations for 20% Steam/80% CO2, by
mass; M1=3.5, T1=1200 K over a 25° wedge: at z=5.0 units above the wedge leading edge.

(a)  Mach number M
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